인과 추론과 설명 가능한 AI는 인공 지능 분야에서 별개이지만 관련이 있는 두 가지 개념입니다.
인과 추론은 변수 간의 인과 관계를 결정하는 데 사용되는 통계적 방법입니다. 이 기술은 한 변수의 변화가 다른 변수의 결과에 어떤 영향을 미치는지 이해하는 데 필수적입니다. 인과 추론은 기본 인과 관계를 고려하여 예측 및 결정을 내리는 데 도움이 됩니다.
반면 설명 가능한 AI는 기계 학습 모델을 인간이 투명하고 이해할 수 있도록 만드는 데 중점을 둔 인공 지능의 하위 분야입니다. 설명 가능한 AI의 목표는 모델이 특정 결정에 도달한 방법에 대한 통찰력을 제공하고 이러한 결정을 신뢰할 수 있고 신뢰할 수 있도록 만드는 것입니다. 즉, 설명 가능한 AI는 AI 모델의 예측 이면에 있는 추론을 이해하고 해석하는 방법을 제공합니다.
기계 학습의 맥락에서 인과 추론을 사용하여 특정 결과에 영향을 미치는 가장 중요한 요소를 식별할 수 있습니다. 예를 들어 기계 학습 모델을 사용하여 집 가격을 예측하는 경우 인과 관계 추론은 집의 위치, 크기 및 연령과 같은 가격을 결정하는 가장 중요한 요소를 식별하는 데 도움이 될 수 있습니다. 반면, 설명 가능한 AI는 기계 학습 모델이 각 요소에 할당된 특정 가중치 및 이러한 가중치가 어떻게 결정되었는지와 같이 주택 가격에 대한 예측에 도달한 방법에 대해 투명하고 이해하기 쉬운 설명을 제공할 수 있습니다.
설명 가능한 AI가 제공하는 투명성은 변수 간의 인과 관계를 이해하는 것과는 다릅니다. Explainable AI는 기계 학습 모델이 예측에 도달한 방법을 이해하는 방법을 제공하지만 변수 간의 기본 인과 관계에 대한 통찰력을 반드시 제공하지는 않습니다.
요약하면, 인과적 추론과 설명 가능한 AI는 별개의 개념이지만 둘 다 기계 학습 모델에 의해 만들어진 예측을 이해하는 데 중요한 역할을 한다는 점에서 관련이 있습니다. 인과 추론은 변수 간의 인과 관계를 식별하는 데 도움이 되며 설명 가능한 AI는 머신 러닝 모델이 어떻게 예측에 도달했는지에 대한 투명성과 이해를 제공합니다.
Causal inference and explainable AI are two distinct yet related concepts in the field of artificial intelligence.
Causal inference is a statistical method that is used to determine the cause-and-effect relationship between variables.
This technique is essential in understanding how a change in one variable will impact the outcome of another variable.
Causal inference helps in making predictions and decisions by considering the underlying cause-and-effect relationships.
Explainable AI, on the other hand, is a subfield of artificial intelligence that focuses on making machine learning models
transparent and understandable to humans. The goal of explainable AI is to provide insights into how a model arrived at
a particular decision, and to make these decisions trustworthy and reliable. In other words, explainable AI provides a
way to understand and interpret the reasoning behind an AI model's predictions.
In the context of machine learning, causal inference can be used to identify the most significant factors that impact a
particular outcome. For example, if a machine learning model is used to predict the price of a house, causal inference
can help identify the most critical factors that determine the price, such as location, size, and age of the house.
On the other hand, explainable AI can provide a transparent and understandable explanation of how the machine
learning model arrived at its predictions for the price of the house, such as the specific weights assigned to each factor
and how these weights were determined.
It is important to note that the transparency provided by explainable AI is not the same as understanding the cause-and-
effect relationship between variables. Explainable AI provides a way to understand how a machine learning model
arrived at its predictions, but it does not necessarily provide insight into the underlying causal relationships between
variables.
In summary, while causal inference and explainable AI are distinct concepts, they are related in the sense that they both
play a critical role in understanding the predictions made by machine learning models. Causal inference helps identify
the cause-and-effect relationships between variables, while explainable AI provides transparency and understanding
into how machine learning models arrived at their predictions.
* This post was written with chatGPT.